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Swing wave-wave interaction: Coupling between fast magnetosonic and Alfve´n waves

T. V. Zaqarashvili* and B. Roberts
School of Mathematics and Statistics, University of St. Andrews, St. Andrews, Fife KY16 9SS, Scotland

~Received 2 April 2002; published 6 August 2002!

We suggest a mechanism of energy transformation from fast magnetosonic waves propagating across a
magnetic field to Alfve´n waves propagating along the field. The mechanism is based onswing wave-wave
interaction @T. V. Zaqarashvili, Astrophys. J. Lett.552, 107 ~2001!#. The standing fast magnetosonic waves
cause a periodical variation in the Alfve´n speed, with the amplitude of an Alfve´n wave being governed by
Mathieu’s equation. Consequently, subharmonics of Alfve´n waves with a frequency half that of magnetosonic
waves grow exponentially in time. It is suggested that the energy of nonelectromagnetic forces, which are able
to support the magnetosonic oscillations, may be transmitted into the energy of purely magnetic oscillations.
Possible astrophysical applications of the mechanism are briefly discussed.

DOI: 10.1103/PhysRevE.66.026401 PACS number~s!: 52.35.Mw
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I. INTRODUCTION

Many observed phenomena can be associated with w
like motions, increasing interest in the study of wave dyna
ics. Linear perturbation theory considers an arbitrary dis
bance as a superposition of independently evolv
eigenmodes, thus simplifying the description of the proce
However, interactions between different harmonics as we
between different kinds of waves leads to the appearanc
substantially new phenomena.

In the case of large-amplitude acoustic waves, nonline
ity leads to the generation of higher harmonics that ca
steepening of the wave front and consequently the forma
of shock waves. Also developments in plasma theory rai
interest in the study of interactions between different wav
It is shown that nonlinear interaction leads to the genera
of resonant triplets~or multiplets! in the plasma@1–3#. The
nonlinear interaction between magnetohydrodynam
~MHD! waves has been studied in various astrophysical s
ations @4–7#. Additionally, MHD wave coupling due to in-
homogeneity of the medium@8–12# or a background flow
@13–15# has also been developed.

Recently, a new kind of interaction between sound a
Alfvén waves has been discussed by Zaqarashvili@16#. The
physical basis of this interaction is the parametric influen
sound waves cause a periodical variation in the mediu
parameters, which affects the velocity of transversal Alfv´n
waves and leads to a resonant energy transformation
certain harmonics. In a high-b plasma, it is shown that peri
odical variations of the medium’s density, caused by
propagation of sound waves along an applied magnetic fi
results in Alfvén waves being governed by Mathieu’s equ
tion ~hereb58pp/B2@1, wherep is the plasma pressur
and B is the magnetic field!. Consequently, harmonics wit
half the frequency of sound waves grow exponentially
time. The same phenomenon was developed in the cas
standing sound waves@17#. The process of energy exchang
between these different kinds of wave motion is calledswing

*Also at Abastumani Astrophysical Observatory, Al. Kazbegi Av
2a, 380060 Tbilisi, Georgia.
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wave-wave interaction. This terminology arises from an
analogy with a swinging pendulum, as described below.

In this paper we further develop the theory for intera
tions between fast magnetosonic waves and Alfve´n waves.
For clarity of presentation we first recall the pendulum an
ogy and show that under certain conditions the energy
spring oscillations along the pendulum axis is transform
into the energy of transversal oscillations of the pendulu
and vice versa. Following a discussion of the general phy
of swing interaction, we consider the example of coupli
between fast magnetosonic waves propagating across a
plied magnetic field and Alfve´n waves propagating along th
field. Finally, we briefly describe the applications of th
theory to various astrophysical situations.

II. SWING PENDULUM

It is useful to begin with a mechanical analogy of th
wave dynamics in a medium~see Ref.@2# in the case of
three-wave interaction!. Consider a mathematical pendulu
with massm and equilibrium lengthL ~see Fig. 1!. Part of
the pendulum length consists of a spring with stiffness c
stants. There are two kinds of oscillations in this system

. FIG. 1. The swing pendulum in equilibrium~left! and in oscil-
lation ~right!.
©2002 The American Physical Society01-1
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transversal oscillations due to gravity and spring oscillatio
along the pendulum axis due to the elasticity of the spri
This is aswing pendulum.

In equilibrium, gravity is balanced by the stiffness for
T0 of the spring so that

T05sh5mg,

whereg is the gravitational acceleration andh is the equilib-
rium length of the spring~the natural length of the spring i
supposed to be negligible!. For displacementx along the
pendulum axis, the stiffness force becomes

T5s~h1x!5mg1sx.

Newton’s second law applied along the pendulum axis, w
the pendulum makes an angleQ with the vertical~see Fig.
1!, gives the equation of motion~the centrifugal force due to
the transversal oscillation is neglected!,

ẍ1
s

m
x5g~cosQ21!.

Due to the oscillation of the spring along the axis, t
pendulum length is a function of time and the equation
transversal motions of the pendulum under gravity is

Q̈1
g

L1x
sinQ50.

For clarity of presentation a term 2ẋQ̇/(L1x) is neglected
here; it does not affect the physical nature of the pheno
enon ~for general consideration, see Refs.@18,19#!. So we
have two different oscillations of the pendulum, which a
coupled, and each oscillation influences the other. Consi
ing small amplitude oscillations, we find two coupled equ
tions governing the dynamics of the pendulum:

ẍ1v1
2x52

1

2
gQ2, ~1!

Q̈1v2
2S 12

x

L DQ50, ~2!

where v15Ag/h and v25Ag/L are the fundamental fre
quencies of the system.

From Eqs.~1! and ~2! we can see that longitudinal osci
lations of the pendulum causes a periodical variation of
pendulum length. In certain conditions this can lead to
well-known parametric amplification of transversal oscil
tions. Whenx is a periodical function of time, then Eq.~2!
becames Mathieu’s equation and it has a resonant solu
when

v25
1

2
v1 , ~3!

corresponding toL54h.
Under these conditions, initial spring oscillationsx along

the pendulum axis can amplify small transversal pertur
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tions Q @see Eq.~2!#. On the other hand, transversal oscill
tions may be considered as an external periodic force@see
Eq. ~1!# that causes the damping and consequent amplifi
tion of longitudinal oscillations. So, in the absence of dis
pation, there is a subsequent energy exchange between
ferent oscillations in the system. But if some kind of extern
force supports the spring oscillations then they can amp
the transversal oscillations until nonlinear effects beca
significant.

III. SWING WAVE-WAVE INTERACTION

The generalization of the above analogy to waves in
medium leads to interesting phenomena. Spring oscillati
do work against gravity and cause periodical variations
the parameter~pendulum lengthL) of transversal oscilla-
tions. As a result of this work, the energy of spring oscil
tions transforms into the energy of transversal oscillatio
So we may expect a similar process in a medium when
kind of wave causes a periodical variation of another wa
parameter.

There are three main forces in the equation of motion
an ideal conductive fluid: the pressure gradient2“p, grav-
ity r“f, and the Lorentz forcej3B. Herep and r denote
the plasma pressure and density,f is the gravitational poten-
tial, andj is the current in a magnetic fieldB. Each of these
forces represents the restoring force against the fluid ine
and thus leads to the generation of different kinds of wa
motions. Of these forces, only the Lorentz force does
include the density~in the pressure gradient the densi
arises from the equation of state!. This fact leads to the ap
pearance of the density in the expression for the magn
speed, the Alfve´n speedVA5B/A4pr, which describes the
propagation of magnetic waves and depends on the med
densityr. For a similar reason, the frequency of pendulu
oscillations does not depend on the pendulum mass~because
the gravitational force depends on it!, while the frequency of
spring oscillation does depend on the mass~because the stiff-
ness force does not depend on it!. On the other hand, com
pressible waves cause density variations in the medium
therefore they may affect the propagation properties of m
netic waves. This suggests a coupling between longitudi
compressible waves~leading to density perturbations! and
transversal magnetic waves propagating with a velocity t
depends on the density. The latter can be associated
Alfvén waves that are transversal and represents the pu
electromagnetic properties of the medium. The compress
waves cause a periodical variation of the density and so
the Alfvén speed, and may lead to the effective energy tra
mission into certain harmonics of Alfve´n waves. The swing
coupling between sound and Alfve´n waves propagating
along an applied magnetic field@16,17# is a good example of
this phenomenon. On the other hand, magnetosonic wa
propagating at an angle to the magnetic field also cause
riodical variations of the Alfve´n speed and may lead to sim
lar phenomena. It is worth noticing that, contrary to the A
fvén waves, the magnetosonic waves can be easily excite
a medium by any force~even of nonelectromagnetic origin!.
Therefore, the coupling between magnetosonic and Alfv´n
1-2
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SWING WAVE-WAVE INTERACTION: COUPLING . . . PHYSICAL REVIEW E66, 026401 ~2002!
waves allows the transmission of energy into purely tra
versal magnetic oscillations through compressible magn
sonic oscillations.

To show the mathematical formalism of swing wave
teraction we consider the case of magnetosonic wave pr
gation across the applied magnetic field. In this case we h
fast magnetosonic waves. For simplicity we consider a re
angular geometry, that then can be generalized to cylindr
and spherical symmetries.

Coupling between fast magnetosonic and Alfve´n waves

Consider motions of a homogeneous medium, with z
viscosity and infinite conductivity, as described by the id
MHD equations:

]B

]t
1~u•“ !B5~B•“ !u2B“•u, “•B50, ~4!

r
]u

]t
1r~u•“ !u52“Fp1

B2

8pG1
~B•“ !B

4p
, ~5!

]r

]t
1~u•“ !r1r“•u50, ~6!

where u is the fluid velocity. We consider adiabatic pro
cesses, so the pressurep and densityr are connected by the
relation

p5p0S r

r0
D g

, ~7!

wherep0 and r0 are the unperturbed uniform pressure a
density andg is the ratio of specific heats. We neglect gra
ity, though it may be of importance under some astrophys
conditions.

Linear analysis of Eqs.~4!–~7! show the existence o
three kinds of MHD waves: Alfve´n and magnetosonic~fast
and slow! waves. The difference between these waves is
the restoring force of Alfve´n waves is the tension of mag
netic field lines (B•“)B/4p, acting alone, while the restor
ing force of magnetosonic waves is mainly the gradient
ordinary and magnetic pressures,2“@p1B2/8p#. The vari-
ous waves can be distinguished by their different speeds
polarizations. The linear evolution of the waves in a hom
geneous medium is governed by the usual linear wave e
tions.

Consider a uniform, unperturbed, magnetic fieldB0
5(0,0,B0) directed along thez axis, and the case of magne
tosonic wave propagation across the field in thex direction
~see Fig. 2!. Then there are only fast magnetosonic wav
~the slow wave is absent! that in the linear approximation i
described by the equations:

]bz

]t
52B0

]ux

]x
, ~8!

r0

]ux

]t
52

]

]x Fcs
2r1

B0bz

4p G , ~9!
02640
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]r

]t
52r0

]ux

]x
, ~10!

wherebz andux are the perturbations of magnetic field an
velocity, respectively, andcs5Agp0 /r0 is the sound speed
Here and afterwardsr denotes the perturbation of density@in
Eqs.~4! and~5!, r was the total density#. The wave equation
for linear fast magnetosonic waves then follows

]2ux

]t2 2Vf
2 ]2ux

]x2 50, ~11!

whereVf5Acs
21VA

2 is the phase velocity of fast waves an

VA5AB0
2/4pr0 is the Alfvén speed.

The solution of the wave equation can be either propag
ing or standing patterns. The boundedness of the med
leads to the formation of a discrete spectrum of harmon
that represent the normal modes~eigenmodes! of the system.
We consider the standing fast magnetosonic waves that h
a straightforward extention to cylindrical~pulsating magnetic
tube! and spherical~pulsating sphere with dipolelike mag
netic field! geometries. The solutions for standing~plane!
fast magnetosonic waves are

ux5aVfsin~vnt !sin~knx!,

r5ar0cos~vnt !cos~knx!,

bz5aB0cos~vnt !cos~knx!, ~12!

wherekn5(np/ l )(n51,2, . . . ) is theeigenvalue for a sys-
tem of size l in the x direction, vn is the corresponding
eigenfrequency, anda is the relative amplitude of the waves
Eigenvalues and eigenfrequencies are related by the dis
sion relationvn /kn5Vf .

It is seen from the expressions~12! that standing fast
magnetosonic waves cause a local periodical variation
both the density and the magnetic field. This variation

FIG. 2. The unperturbed magnetic fieldB0 is directed along the
z axis. The system is bounded in thex direction (l is the size of the
system!. Standing fast magnetosonic waves are polarized in thx
direction, while Alfvén waves are polarized along they axis and
propagate along thez axis.
1-3
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maximal near the nodes of the velocity and approache
zero near the antinodes. The amplitude of the variation
considered to be small (a!1), and so does not affect the fa
magnetosonic wave itself.

Consider now the influence of the density and the m
netic field variations~12! on Alfvén waves, considered to b
polarized in they-z plane. Then the velocity fields of fas
magnetosonic and Alfve´n waves are decoupled. The line
equations for Alfve´n waves are

]by

]t
5B0

]uy

]z
, ~13!

r0

]uy

]t
5

B0

4p

]by

]z
, ~14!

whereby anduy are small perturbations of the magnetic fie
and the velocity. These equations lead to the wave equa

]2by

]t2 2VA
2 ]2by

]z2 50. ~15!

The influence of the fast magnetosonic waves can be
pressed by modifying Eqs.~13! and~14!, which now became

]by

]t
5~B01bz!

]uy

]z
2

]ux

]x
by , ~16!

~r01r!
]uy

]t
5

B01bz

4p

]by

]z
. ~17!

Here we have neglected the advective termsux]by /]x and
(r01r)ux]uy /]x for several reasons. At the initial stage, t
perturbationsby anduy of Alfvén waves propagating alon
the z axis do not depend on thex coordinate; each magneti
surface acrossx evolves independently. Thex dependence
arises due to the action of the fast magnetosonic waves,
so the neglected terms are second order ina2. Moreover, we
can consider the Alfve´n waves at the velocity node of stan
ing fast magnetosonic waves, where these terms are zer
principle, the coordinatex stands as a parameter in Eqs.~16!
and ~17! of Alfvén waves.

Equations~16! and~17! lead to the Hill-type second-orde
differential equation

]2by

]t2 2
~2B01bz!ḃz

B0~B01bz!

]by

]t
2

~B01bz!b̈z2ḃz
2

B0~B01bz!
by

2
~B01bz!

2

4p~r01r!

]2by

]z2 50, ~18!

whereḃz denotes the time derivative of the perturbing fie
Introducing

by5hy~z,t !expE ~2B01bz!ḃz

2B0~B01bz!
dt ~19!

and neglecting terms of ordera2 leads to the equation
02640
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]2hy

]t2 2VA
2@11a cos~knx!cos~vnt !#

]2hy

]z2 50. ~20!

Comparing Eqs.~20! and ~15! we can see that the influenc
of standing fast magnetosonic waves is expressed throu
periodical variation of the Alfve´n speed.

Performing a Fourier transform ofhy with hy

5* ĥy(kz ,t)eikzzdkz , Eq. ~20! leads to Mathieu’s equation
@20#

]2ĥy

]t2 1@VA
2kz

21d cos~vnt !#ĥy50, ~21!

where

d5aVA
2kz

2cos~knx!, ~22!

with x playing the role of a parameter. Equation~21! has
main resonant solution if

vA5
B0kz

A4pr0

5
vn

2
~23!

and it can be expressed as

ĥy5h0e(udu/2vn)tFcos
vn

2
t2sin

vn

2
t G , ~24!

where h05h(0). The solution has a resonant charact
within the frequency interval

UvA2
vn

2 U,U d

vn
U. ~25!

Equation~24! shows that the harmonics of Alfve´n waves
with half the frequency of fast magnetosonic waves grow
exponentially in time. The growth rate of Alfve´n waves is
maximal at the velocity nodes of fast magnetosonic wa
and tends to zero at the antinodes@see Eqs.~12! and ~22!#.
The amplitude of the magnetic field component in Alfve´n
waves depends on thex coordinate, i.e.. there is the period
cal magnetic pressure gradient along this direction. Ene
conservation implies that this gradient leads to the damp
of initial fast magnetosonic waves, i.e., the energy tra
formed into Alfvén waves is extracted from fast magnet
sonic waves. To show this, we consider the backreaction
amplified Alfvén waves on the initial fast magnetoson
waves.

The dependence ofby on the x coordinate leads to an
additional term in the equation of motion~9! for fast waves,

r0

]ux

]t
52

]

]x Fcs
2r1

B0bz

4p G2
]

]xF by
2

8pG . ~26!

Therefore the wave equation~11! now becomes

]2ux

]t2 2Vf
2 ]2ux

]x2 52
]2

]t]x F by
2

8pG . ~27!
1-4
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SWING WAVE-WAVE INTERACTION: COUPLING . . . PHYSICAL REVIEW E66, 026401 ~2002!
The additional term has the frequency of the initial fast m
netosonic wavesvn ~within the order ofa2) and can be
considered as the external periodic force. At the initial sta
it can be neglected as of second order. However, it beco
significant because of the exponential growth of amplitu
@see Eq.~24!#. It oscillates out of phase with respect to th
initial fast waves~12!, thus leading to their damping~as ex-
pected from physical considerations!.

Note that Eqs.~1! and~2! describing the pendulum osci
lations are similar to Eqs.~20! and ~27! describing Alfvén
waves and fast magnetosonic waves; the longitudinal os
lations of the pendulum correspond to the fast magnetos
waves and the transversal oscillations correspond to the
fvén waves.

Swing coupling between fast magnetosonic and Alfv´n
waves may be generalized from rectangular geometry
other symmetries, though a detailed description is beyond
scope of this paper.

IV. DISCUSSION

The suggested mechanism of energy transformation f
fast magnetosonic into Alfve´n waves has important conse
quences. It can be noted that the Alfve´n waves hardly un-
dergo either excitation or damping processes, while mag
tosonic waves can be easily excited by external, e
nonelectromagnetic, forces. Then swing interaction lead
the intriguing but natural suggestion that the energy of
nonelectromagnetic force that supports the magnetos
waves in the system can be transmitted into the energ
purely magnetic incompressible oscillations. This result
many astrophysical applications. We briefly describe sev
of them.

A. Swing absorption

Resonant interaction between MHD waves, due to the
homogeneity of the medium, was proposed by Ionson@8#. It
arises where the frequency of an incoming wave matches
local frequency of the medium. Then a resonant ene
transformation may take place, known as resonant abs
tion.

Similar phenomenon may also arise due to swing w
interaction. In this case fast magnetosonic waves can tr
form their energy into Alfve´n waves, even in a homogeneo
medium. For given medium parameters~magnetic field, den-
sity! the energy of fast waves may be ‘‘absorbed’’ by ha
monics with wavelengths satisfying the resonant condit
~23!. Consequently, fast magnetosonic waves can tran
their energy into Alfve´n waves in any spatial distribution o
density or magnetic field. The process can be calledswing
absorption. The particular point ofswing absorptionis that
energy absorption occurs through the harmonics with half
frequency of incoming waves@see Eq.~23!#. The process
may be of importance in the earth’s magnetosphere an
the solar atmosphere.
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B. Torsional Alfvén waves in solar coronal loops

Swing wave interaction may play an important role in t
excitation of torsional Alfve´n waves in solar coronal loops. I
may be suggested that any external action on the magn
tube, anchored in the highly dynamical photosphere, caus
radial pulsation at the fundamental frequency, like a tun
fork ~see also Ref.@21#!. For a tube of radiusr 0 the funda-
mental frequency of pulsation will be of the orderVf /r 0,
whereVf is the phase velocity of fast magnetosonic waves
the photospheric level. If we consider the Alfve´n and sound
speeds to be of order;10 km s21 and the radius of orde
;102 km, then the period of fundamental mode of pulsati
will be a few tens of seconds.

Radial pulsations of the tube may lead to the reson
~exponential! amplification of torsional Alfve´n waves with
half the frequency of the pulsations. These high-freque
torsional Alfvén waves can propagate upward and carry
ergy from the photosphere into the magnetically control
corona or they may be damped in chromospheric regi
leading to the heating of the chromospheric magnetic n
work.

C. Coupling between stellar pulsations
and torsional oscillations

Swing wave interaction may be of importance in stel
interiors. A radial pulsation of a spherically symmetric st
with dipolelike magnetic field may lead to the amplificatio
of torsional oscillations. There are a number of ene
sources that can support pulsations: radiation, nuclear r
tions, tidal forces in binary stars, convection, etc.~e.g., Ref.
@22#!. Then the transformation of pulsational energy into t
sional oscillations may lead to new sources for stellar m
netic activity.

V. CONCLUDING REMARKS

The swing wave-wave interaction@16# is developed here
in the case of fast magnetosonic waves propagating acro
magnetic field and Alfve´n waves propagating along the field
In the case of oblique propagation, slow magnetosonic wa
also exist and they may transmit their energy into Alfv´n
waves. In some cases the coupling between slow magn
sonic and Alfvén waves may be of importance. Also, th
coupling in the case of different geometries~cylindrical,
spherical! may be important in astrophysical situations. T
most important result of swing wave interaction is that
reveals a new energy channel for Alfve´n waves, permitting
the transformation of energy of nonelectromagnetic ori
into the energy of electromagnetic oscillations.
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